/**************************************************************************\ MODULE: vec_zz_p SUMMARY: Provides vectors over zz_p, along with some related operations. \**************************************************************************/ #include "zz_p.h" #include "vec_zz.h" #include NTL_vector_decl(zz_p,vec_zz_p) NTL_io_vector_decl(zz_p,vec_zz_p) // I/O operators are defined NTL_eq_vector_decl(zz_p,vec_zz_p) // operators == and != are defined void mul(vec_zz_p& x, const vec_zz_p& a, zz_p b); void mul(vec_zz_p& x, const vec_zz_p& a, long b); void mul(vec_zz_p& x, zz_p a, const vec_zz_p& b); void mul(vec_zz_p& x, long a, const vec_zz_p& b); // x = a * b void add(vec_zz_p& x, const vec_zz_p& a, const vec_zz_p& b); // x = a + b void sub(vec_zz_p& x, const vec_zz_p& a, const vec_zz_p& b); // x = a - b void clear(vec_zz_p& x); // x = 0 (length unchanged) void negate(vec_zz_p& x, const vec_zz_p& a); // x = -a long IsZero(const vec_zz_p& a); // test if a is the zero vector void VectorCopy(vec_zz_p& x, const vec_zz_p& a, long n); vec_zz_p VectorCopy(const vec_zz_p& a, long n); // x = a copy of a of length exactly n. // The input is truncated or padded with zeroes, as necessary. void InnerProduct(zz_p& x, const vec_zz_p& a, const vec_zz_p& b); // x = sum_{i=0}^{n-1} a[i]*b[i], where n = min(a.length(), // b.length()) void InnerProduct(zz_p& x, const vec_zz_p& a, const vec_zz_p& b, long offset); // x = sum_{i=offset}^{n-1} a[i]*b[i-offset], where n = min(a.length(), // b.length()+offset) long CRT(vec_ZZ& a, ZZ& prod, const vec_zz_p& A); // Incremental Chinese Remaindering: If p is the current zz_p modulus with // (p, prod) = 1; Computes a' such that a' = a mod prod and a' = A mod p, // with coefficients in the interval (-p*prod/2, p*prod/2]; // Sets a := a', prod := p*prod, and returns 1 if a's value changed. // operator notation: vec_zz_p operator+(const vec_zz_p& a, const vec_zz_p& b); vec_zz_p operator-(const vec_zz_p& a, const vec_zz_p& b); vec_zz_p operator-(const vec_zz_p& a); // vector/scalar multiplication: vec_zz_p operator*(const vec_zz_p& a, zz_p b); vec_zz_p operator*(const vec_zz_p& a, long b); vec_zz_p operator*(zz_p a, const vec_zz_p& b); vec_zz_p operator*(long a, const vec_zz_p& b); // inner product: zz_p operator*(const vec_zz_p& a, const vec_zz_p& b); // assignment operator notation: vec_zz_p& operator+=(vec_zz_p& x, const vec_zz_p& a); vec_zz_p& operator-=(vec_zz_p& x, const vec_zz_p& a); vec_zz_p& operator*=(vec_zz_p& x, zz_p a); vec_zz_p& operator*=(vec_zz_p& x, long a);